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A VANISHING THEOREM
FOR SEMIPOSITIVE LINE BUNDLES
OVER NON-KAHLER MANIFOLDS

YUM-TONG SIU

We prove in this paper the following vanishing theorem. If M is a compact
complex manifold and L is a Hermitian holomorphic line bundle whose
curvature form is everywhere semipositive and is strictly positive outside a set
of measure zero, then H4( M, LK,,) vanishes for ¢ > 1, where K,, is the
canonical line bundle of M. In view of the results of Grauert-Riemenschneider
[4] this is equivalent to the statement that any compact complex manifold M
which admits such a line bundle L must be MoiSezon (in the sense that the
transcendence degree of the meromorphic function field of M must equal the
complex dimension of M). This vanishing theorem is motivated by the
conjecture of Grauert-Riemenschneider {4, p. 277]. [11, Conjecture I] which is
still an open problem. The difficulty with the conjecture is how to prove the
following special case.

Conjecture of Grauert-Riemenschneider. Let M be a compact complex
manifold which admits a Hermitian holomorphic line bundle L whose curva-
ture form is positive definite on a dense subset G of M. Then M is Moisezon.

The conjecture of Grauert-Riemenschneider was originally introduced for
the purpose of characterizing MoiSezon spaces by quasipositive torsion-free
sheaves. Since then a number of other characterizations of MoiSezon spaces
have been obtained [11}, [17], [16], [2], [10] which circumvent the difficulty of
proving the Grauert-Riemenschneider conjecture by stating the characteriza-
tions in such a way that a proof can be obtained by using blow-ups, Kodaira’s
vanishing and embedding theorems, or L? estimates of d for complete Kahler
manifolds.

Our vanishing theorem is equivalent to the confirmation of the conjecture of
Grauert-Riemenschneider for the special case where M — G is of measure zero
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in M. As a consequence it gives a characterization of Moi$ezon spaces in the
spirit of Kodaira [7] and Grauert [3].

Some special cases of our vanishing theorem were proved -earlier.
Riemenschneider [12] proved it under the assumption that M is Kahler and the
curvature form of L is positive at some point. It was also proved when the set
of points where the curvature form of L is not positive definite is contained in
a complex-analytic subvariety of dimension zero [11] or one [14]. A special case
with additional assumptions on the eigenvalues of the curvature form of L was
proved in [15].

As a way of proving the Grauert-Riemenschneider conjecture, Peternell is
trying to develop, in the case of degenerate Kiahler metrics, a theory to
represent cohomology classes with coefficients in line bundles by bundle-
valued harmonic forms and has obtained some partial results [8].

We sketch below our method of proof. By the theorem of Hirzebruch-
Riemann-Roch (which for the case of a general compact complex manifold is a
consequence of the index theorem of Atiyah-Singer [1]),

R
Y, (-1)?dim HY(M, L*) > ck”"
g=0
for some positive constant ¢ when k is sufficiently large. To prove that M is
MoiSezon, it suffices to show that dim I'(M, L*) > c¢k"/2 for k sufficiently
large. For that purpose it suffices to show that for any given positive number &
and for ¢ > 1 one has dim H9(M, L¥) < k" for k sufficiently large. This one
obtains by using the ideas of Poincaré [9] and Siegel [13] in the following way.
Give M a Hermitian metric and represent elements of H9( M, L*) by harmonic
forms. By using the L? estimates of 9, one obtains a linear map from the space
of harmonic forms to the space of cocycles. Take a lattice of points with
distances k ~1/? apart in a small neighborhood W of M — G. Then one uses the
Schwarz lemma to show that any cocycle coming from a harmonic form via the
linear map and vanishing at all the lattice points must vanish identically,
otherwise its norm is so small that the 9-closed form constructed from it by
using a partition of unity would have a norm smaller than that of the harmonic
form in its cohomology class. It follows that dim H9( M, L*) is dominated by
the number of lattice points (which is comparable to the volume of W times
k™), otherwise there is a nonzero linear combination of cocycles coming from a
basis of harmonic forms via the linear map and vanishing at all the lattice
points. The reason why such a lattice of points is chosen is that the pointwise
square norm of a local holomorphic section of L* is of the form |f |%e~%?,
where f is a holomorphic function and ¢ is a plurisubharmonic function
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corresponding to the Hermitian metric of L. The factor e %% is an obstacle to
applying the Schwarz lemma. To overcome the obstacle, one chooses a local
trivialization of L so that ¢ as well as dg vanishes at a point. Then on the ball
of radius k~1/? centered at that point, e % is bounded below from zero and
from above by constants independent of k.

This method of proof gives us a way of producing holomorphic sections,
over a compact complex Hermitian manifold, of a Hermitian holomorphic line
bundle which is not semipositive. All that is required is the assumption that,
outside a set whose measure is small compared to some constants constructed
from the manifold, the curvature form of the line bundle has a positive lower
bound which is large compared to its upper bound on the set of small measure
and to the torsion tensor of the manifold.

One can consider a stronger version of the Grauert-Riemenschneider conjec-
ture which assumes only that the curvature form of L is positive semidefinite
everywhere and positive definite at some point. This stronger form can be
proved if one can prove the following conjecture concerning eigenvalues.

The eigenvalue conjecture. Let M be a compact complex manifold and L a
Hermitian holomorphic line bundle over M whose curvature form is positive
semidefinite everywhere and positive definite at some point. Then
inf, .o A(M, LF) > 0, where A(M, L*) is the smallest positive eigenvalue of the
Laplacian 0*3 on the Hilbert space of all global L? sections of L* over M.

This conjecture is very plausible, because the smallest positive eigenvalue
should increase when the line bundle is more positive. The larger & is, the more
positive L* is. In the case of a strictly positive line bundle over a compact
Kahler manifold, the square of the smallest positive eigenvalue is no less than
the lower bound of the quadratic form which is the sum of the curvature form
of the bundle and the Ricci curvature form of the manifold. Unfortunately, no
one has yet found a way to estimate from below the smallest positive
eigenvalue in the case of a semipositive line bundle. The only known lower
cigenvalue estimates are for the Laplace-Beltrami operator for square integra-
ble real-valued functions on compact Riemann manifolds. Even for the space
of forms on a compact Riemannian manifold such estimates are unknown,
because all the methods used so far for such estimates involve some kind of
maximum principle for real-valued functions. In the last part of this paper we
show how one derives the stronger form of the Grauert-Riemenschneider
conjecture from the eigenvalue conjecture. We hope that this relationship
between the two conjectures will provide some motivation and incentive to
investigate the lower bound of the first eigenvalue for square integrable
sections of a holomorphic line bundie.
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1. Schwarz’s lemma

In this section we prove a Schwarz lemma for L? norms of sections of the
kth power of a line bundle, It is formulated in such a way as to avoid
dependence on k.

(1.1) Let M be a compact complex manifold of complex dimension # and L
be a Hermitian holomorphic line bundle over M. We cover M by a finite
number of coordinate charts Uj,- - -, U, with the following property. There
exist positive numbers R,, ; and open subsets U’ € U; (1 <j < m) with
U7_1U/ = M such that

(i) for every point x of U the open ball with center x and radius R, with
respect to the coordinate patch U, is relatively compact in Uj,

(i) for every point x of U, there exists a trivialization of L|U; so that the
Hermitian metric of L|U;, when put in the form e~% with respect to this
trivialization, satisfies the condition that d¢ vanishes at x and all the second-
order derivatives of ¢ with respect to the coordinate chart U; are bounded by
Cyonall of U.

Forx € U/ and 0 < r < R, we denote by B;(x, r) the ball with center x and
radius r with respect to the coordinate patch U,. Let C; = exp(4n*Cy). For a
section s of L* over an open subset G of M we denote by ||s]| the nonnegative-
valued function on G which is the pointwise norm of s.

(1.2) Lemma (Schwarz’s lemma for L* sections). For any integer k, any
numbers 0 <r < Roand 0 <A <1/2withl <k < 1/r2, if s is a holomorphic
section of L* over the ball B0, r) with 0 € U; and if s vanishes at O of order I,
then for P € B;(0, Ar)

[omsppseyraf st
B;(0,Ar) )

B;(0.r

’

where the integration is with respect to the Euclidean volume form of the
coordinates of U,.
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Proof. According to the choice of Ui, - -, U, we can find a trivialization of
L|U; so that the Hermitian metric of L|U, when put in the form e~? with
respect to this trivialization, satisfies the conditions that d¢ vanishes at 0 and
all the second-order derivatives of ¢ with respect to the coordinate chart U, are
bounded by C; on all of U. Let x;,--,x,, be the real coordinates of the
coordinate chart U. Since do vanishes at 0, by Taylor expansion we have for
P € B(0,r)

#(P) = p(0) + 2 2" e (P (P)x (),

where P’ is a point on the line-segment joining P to 0 with respect to the
coordinates of U,. Thus for P, Q € B,(0, r)

1 2n

?(P) -~ 9(Q) =3 ZL

(P)x,(P)x,(P)

xax

1 2n
-3 Z= (2)x.(0)x,(0),

n,y

xax

where Q' is a point on the line joining Q to 0 with respect to the coordinates of
U,. It follows that for P, Q € B,(0, r)

lp(P) — 9(Q)] < (2n)*Cyr?.

With respect to the trivialization of L|U; the section s becomes a holomorphic
function on B;(0, r) which we denote by f. By the usual Schwarz lemma
applied to the holomorphic function f we have

F(P)<(20)" sup  [7(Q)|

Q€B,0,7/2)
for P € B;(0, Ar). By the subharmonicity of If|%, we have for Q € B0, r/2)

n!

(w(r/2)?)" '/1.9,-(Q. r/2)

2

1) < I,

where the integration is with respect to the Euclidean volume form of the
coordinates of U,. Hence for P B;(0, Ar),

2 2 2%1p! 2
) < N | J(O,r)lfl :
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Since|[s||> =|f[%¢~*?, it follows that for P & B,(0, Ar),

227p1 2
s(P)* < (205 e ko(P) I/
() < @AY Tt f

(zx)”2 ; fB oo es e

< (2A)2’———22""! [ llperenrar
T B/(0, )

22! 2
< (@r) C s
ey SEmal,, M

because k < 1/r. The results follow from integrating {|s(P)||* over B0, Ar).

2. Leray isomorphism with L? estimates

The Leray isomorphism establishes a correspondence between line-bundle-
valued harmonic forms and cocycles with coefficients in the bundle. In this
section we use the d estimates to keep track of the L? estimates in the
correspondence and also study the dependence of the L? estimates on the size
of the covering. '

(2.1) Take 0 <d < Ry/3n and 1 <j< m. We consider the set of all
y = (vy, -+ +,vy,) € Z>" such that the ball with center (»,d,---,»,,d) and
radius 3nd with respect to the real coordinates of the coordinate patch U, is
relatively compact in U. For such a multi-index » let a;, be the point whose
real coordinates are (»d,- - -,»,,d) with respect to the coordinate patch U,.
Let B, = B(a,,,2nd), B/, = B,(a,,, nd) and B, = B/(a,,,3nd/2).

Let 7(A) be a nonnegative-valued function on 0 < A < 1 so that the support
of 7 is contained in [0,3 /4) and 7 = 1 on [0,1/2]. Let 0;, be the function on B},
with compact support defined by o,,(x) = 7(7, (x)/2nd ), where 7,,(x) is the
distance from x to a;, measured respect to the coordinates of U We can
consider o;, as a function on M. g, = 1 on B/,.

Leto =2, 0,. Since U C UJ ,,BJ’, and M U U, it follows that ¢ > 1
on M. Let p,, = 0, /0. At x € U] all derivatives of Py of order < I with respect

to the coordz'nate patch U, are bounded by C,d~', where C, is a constant

1

depending only on / and independent of j, » and d, because clearly we have
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such a conclusion when p,, is replaced by o;, and, moreover, at any given point
of M no more than (4n + 1)>"m of the functions 0,, can be nonzero.

We recall the following theorem of Hormander [6, p. 107]. (The forms here
and also in similar situations later are implicitly assumed to be locally square
integrable.)

(2.2) Let © be a bounded pseudoconvex domain in C”, § be the diameter of
€, ¥ a plurisubharmonic function on €, and g a 9-closed (0, g)-form on
(g > 0). Then there exists a (0, ¢ — 1)-form « on § such that du = g and

2 2
ul e ¥ < e8? e ¥,
qul I fglgl

where the integration and the pointwise norm for forms are with respect to the
Euclidean metric of C”. In particular, the Kohn solution # of du = g which is
perpendicular to all d-closed, (0, g — 1)-forms with respect to the weight
function e~ ¥ satisfies the inequality above.

(2.3) We now assume that the curvature form of the Hermitian metric of L
1s semipositive everywhere on M. Let & denote the Stein cover {B;,} of M.
Take a 0-closed L*-valued (0, g)-form « on M. We construct an element f of
Z9( B, L¥) corresponding to « in the following way.

Let .&//(L*) be the sheaf of germs of L*-valued (0, /)-forms on M. For
notational simplicity we use the single index p to replace the double index
(j,v). For 0<i<g—1 construct 7' = {7, .,} € (B, L7 (L") with
€ (B, N -+ N B,, &7 (L") such that

(1) w=09n" onB

/
nﬂo"'ﬂ/

(ll) (Sn[)#o"‘ﬂlﬂ = 57):;;.1”#’“ on Bl‘-o n---NBA (O < l< 9~ 2)’

Fis1

where
(a) 6 means the coboundary operator and (87'),, ..., is the value of 87’ at
(Bl-'ro’ T ’Bl‘-/a-1)’

(b) in solving the 9 equations in (i) and (ii) the Kohn solution with estimates
given by Hormander’s theorem (2.2) is used and B, or B, N --- N B,  is
regarded as a subdomain of the coordinate patch U, with the smallest j which
contains it.

Let f = 6977 € Z9(4, L¥). Then the mapw ~ f is C-linear. Moreover, we
have the following estimate

(2.3.1) fB o Vool < C*a?e sup [ ol

o - NBy, O<isq” By,
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where C* is independent of &, k, and p,- - -, 11, Here || - || means the pointwise
norm with respect to the Hermitian metric of L* and, in the case of «, also
with respect to the Euclidean metric of U, with the smallest j which contains
B, . The integration is with respect to the Euclidean volume form of U, with the
srnallest J which contains B, N --- N B, and, respectively, B, . The factor d?9
on the right-hand side comes from applylng (2.2) to solve the 9 equation g
times.

(24) Now we want to reverse the process. Given f= {f, . #4} e
Z9( B, L¥), we want to produce a 9-closed L*-valued (0, ¢)-form « on M. In
general, these two processes are not the inverses of each other, but, of course,
at the cohomology level they give the two directions of the Leray isomorphism
between the Dolbeault and the Cech cohomology groups. For 0 < /<
g — 1 construct &' = (¢ } € CTIm (@, #(LF)) with &

#(} u[z -1 0 Hhg-1-1
r(B,,n---nN B# L (LY such that
(i) . = (66°)4yn, 0B, N ---NB,,
(H) aglll.o Bg—i-1 (8§1+1)uo"'uq4—1
onB, N - mBﬂqH(Oslsq—l),

where the §-equations are solved by using the partition of unity {p,} con-
structed in (2.1). More precisely

0 —
g#o"'#q—l - z}\:p)\f)\#o"'#q-ﬂ

e = %‘,p@&&%...uqf,_z O<i<q-—1).

Finally, we set w = 5&;’0‘1 on B, . The map f — « is C-linear and the following
estimate holds:

2 2
(2.4.1) [ llel” < c*a=2a sup ) I71°
B, B/ - (B

Mot My

where C* is independent of 4, k, and p,. The norm || - || and the integration
carry the same meaning as in the estimate of (2.2). On the right-hand side we
have integration over B;) 0 -+ N B” instead of B, N --- N B, ., because the
support of p, is contamed in B, The factor d~27 on the nght hand side comes
from applying the 9 operator q times and from the fact that the factor d '
occurs in the estimate of the derivatives of p, of order < /.
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3. Bochner-Kodaira formula for non-Kahler manifolds
We now use the Bochner-Kodaira formula for non-K#hler manifolds to
show that for large k a harmonic form of unit L? norm with values in the k th
power of a semipositive line bundle has small L> norm on the set where the
curvature form of the line bundle is strictly positive.
(3.1) We give the compact complex manifold M a Hermitian metric g,z. The
torsion tensor 7z is given by

Tgy = ;30‘7\(3/337? ~ 3 8pm)-
For any smooth L*-valued (0, ¢)-form
1 - _
¢ = EZ%]...E(Idz“l A oo A dz%
on M we have the following formula of Bochner-Kodaira type
(39,00 ) 4 +(3%,0%¢) = (2 9,2 ¢) y + k(09,9) 4 +(Ric o, ¢)
+2Re([3, T*19, ¢)  — ([T, T*]9, ¢) s,
where
@) (-, ) means the inner product for L*-valued tensors corresponding
to the global L? norm over M,
(ii) Z denotes covariant differential in the (0, 1)-direction,
(iii) 8¢ = (1/gHX 0(_f‘l¢xﬁz...aqdzﬁl A - A dz% with 0;‘1 = the curvature
tensor of L with the first index raised, )
@iv) (Ric ¢, ¢),, is defined analogous to (8¢, ¢) with 0% replaced by the
Ricci tensor Rf;l with the first index raised,
W) Td = (1/(q = DOETR, bray 0 dz™ A dz® A -+ A dz®,
(vi) 0* and T* are respectively the adjoint operators of 9 and T,
(vi1) for two operators A and B, [A, Bl means AB + BA.

This formula was given by Griffiths [5, p. 429, (7.14)]. In particular, when ¢
is harmonic, we have

0=(2¢,29)y+k(06,0)y+(Rico,0)y — ([T, T*]9, ) .
because
([8, 719, ) s = (379, 9) oy +(T*39, 9) 1y = (T%6,3%0) , + (T30, 6) -
Hence for any harmonic L"-value;d (0, g)-form ¢ on M we have
k(09,¢) s < —(Rico, ¢) y + ([T, T, ¢) sy < Co(9,9) ar

where C, is a constant depending only on the Hermitian metric of M and is
independent of k and ¢.
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As a consequence we have the following lemma.

(3.2) Lemma. Let M be a Hermitian compact complex manifold and L a
Hermitian holomorphic line bundle over M such that the curvature form of L is
semipositive everywhere on M and is positive definite on an open subset G of M.
Let K be a compact subset of G. Then there exists a positive constant Cy, such that
for every positive integer k and for every harmonic L*-valued (0, q)-form ¢ on M
one has [ ||||* < (1/k)Cx [y |01|%, where || - || is the pointwise norm of ¢ with
respect to the Hermitian metrics of M and L, and the integration is with respect to
the volume form of the Hermitian metric of M.

4. Estimates for dimensions of cohomology groups

For g = 1 we estimate in terms of k the dimension of the gth cohomology
group with coefficients in the kth power of a semipositive line bundle whose
curvature form is strictly positive outside a set of measure zero.

(4.1) We now assume that M and L are as in (3.2) and use the notations of
§§1-3. Fix an open neighborhood Wof M — Gandfixn > 0. LetK =M - W
and k, be the smallest integer > Cxn™'. Fix k> k, and ¢ > 1. Take an
L*-valued harmonic (0, ¢)-form « on M with unit global L? norm.

Take 0 < d < R,/3n (and other restrictions will be put on 4 later). From w
we can construct by (2.3) an element f of Z% %, L*). Let y be a number
greater than all the ratios (and their reciprocals) of the volume forms of the
Hermitian metric of M and the Euclidean metrics of the coordinates of U
(1 <j < m). Let C' = (8n)2"9(4n + 1)*"my*C*. Since [,, ||w||* = 1, it follows
from (3.2) that f ||w||®> < . Since no point of M can belong to more than
(4n + 1)*"m of the sets B, and since no B, can intersect more than (8x)*" of
the sets B, from the estimate (2.3.1) we have

2
’ r12¢q
(4.1.1) Z '{Bl-t[)m e mBﬁqu#O”‘p’qH < C d n’
the summation X’ being over B, ,- - -,Bﬂq disjoint from W, and
2
412 g || < €,
( ) Z '[B#Dﬁ o meq“f;LO F"q”

the summation X" being over B, ;- - *,B, notall disjoint from W.

(42) Let y* be a positive number such that for any 1 </, kK < m the
Euclidean metric of the coordinates of U, is < y* times the Euclidean metric of
the coordinates of Uy at every point of U/ N Uj.
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Choose 0 < § < d/8y*. Consider B B,,N ---N B, such that B, N
- N B, is not disjoint from W. Let j be the smallest 1nteger such that B is
contained in Ul. For ¢ = (0, " +,0,,) € Z*" let b, be the point in B whose
coordinates with respect to U; are (0,8, --,0,,8) if b, is of distance > 616
from U, — B with respect to the Euclidean metric of the coordinates of U,. For
each b, let D, = B;(b,,6n8) and D, = B,(b,, 2nd). Each D, is contained in B
and the union of all D, contains the subset of all points of B whose distance
with respect to the Euclidean metric of the coordinates of U is > 476 from
U, — B. Since 8 < d/8vy*, it follows that the union of all D} contains BN
- N B”

Let Qa ‘be the set of all b, as B ranges over all possible ch01ces Let N; be the
number of all elements in &;. Let W’ be the union of W and all such B’s. Let
Vol(-) be the volume function with respect to the Hermitian metric of M. Let
v = (8n)?"9(4n + 1)*"my. Since no point of M can belong to more than
(4n + 1)>"m of the sets B, and since no B, can intersect more than (8n)?"
of the sets B,, it follows that no point of M can belong to more than
(8n)?"9(4n + 1)*"m such B’s. Hence lim,_ , N;62" < v’ Vol(W). Since W’ is
contained in the set of all points of M whose distance from W with respect to
the Hermitian metric of M is < 2ndy¥*, it follows that, after W is chosen, for d
sufficiently small one has Vol(W’) < 2 Vol(W). After W and d are so succes-
sively chosen, for & sufficiently small one has N5 < 4y’ Vol(W)8-2".

(4.3) Leth = h(q, k) be the dimension of H¥(M, L*) over C. Let w,," - -,w,
be a basis over C of the space of all L*-valued harmonic (0, g)-forms on M.
From ,; (1 < i < h) we can construct by (2.3) f17 = {];(J?._#q} € ZU %, L),
1 < i < h. Choose a positive integer /. Some additional assumption will be
imposed on / Jater. We now take a nonzero linear combination f = { f, ... #q} S
ZURB, L*) of fP (1 <i<h)sothatf, ., vanishes to order / at every point
b, of §; coming from B, NN B Smce the number of terms in a
polynomial of degree < /i 1n n var1ables is (*7") and since there are no more
than 4y’ Vol(W)8-2" elements in @, it follows that we have to assume
h > 4y Vol(W)8-2"("7') to conclude that there is such a nonzero linear
combination. Let us make such an assumption. Qur purpose is to show that
with a suitable choice of n, [, W, d, 6, and k this assumption will lead to a
contradiction. Let w be the linear combination of w; (1 < i < h) corresponding
to the nonzero linear combination f of f; (1 < i < 4). By multiplying « by a
positive constant, we can assume without loss of generality that (w, w),, = 1.

(4.4) We impose the additional assumption that 8 < 1/6nvk . Now apply
Lemma (1.2) to the section f, ... ay restricted to D, (constructed in (4.2)) with
A =1/3. Since the union of all D; coming from B, N ---N B#q covers
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Brn - N B;’ and since no point of B, N --- N Buq can belong to more
than (4n)2" such balls D D,, it follows that

2 9 \2+2n 2n o
<tz C,(4n)*" /
'/B»"o“ mB‘;;lf“O uq“ = (3) 1( 4 ) Y 5.0

where integration is with respect to the Hermitian metric of M.
Combining it with the inequality (4.1.2), we obtain

CESVID » AU R

2

k4

“fﬂo”'#q

nB,,

) 20420 X
< (3) C,(4n)"y2C'd™,

We now use the procedure in (2.4) to construct from f an L¥-valued 3-closed
(0, g)-form " on M. From (2.4.1), (4.1.1), and (4.4.1) it follows that

/ lo'll” < C#max(C’n, (%
M

Since w” is in the same cohomology class as w and since a harmonic form
minimizes the L* norm in its cohomology class, we conclude that

2{+2n 5
) C,(4n) "YZC’).

(4.4.2) 1= _/M”“’HZ <C* max(C’n, (g)2l+2n

C1(4n)2"72C’).

(4.5) We are going to derive a contradiction by successive appropriate

choices of 7, [, W, d, 8, and k. Fix any e > 0.
(1) Choose 5 such that C*C'n < 1.

(ii) Choose / such that C#(2/3)**2"C,(4n)*"y*C’ < 1.

(iii) Choose W such that 4y’ Vol(W)(";') < e(6n)2". After 7 and W are
chosen, & is determined.

(iv) Choose d sufficiently small so that Vol(W") < 2 Vol(W) is satisfied. Let

= d/8y*.

Now we are free to choose w and k as long as the inequalities § < &y, k > k,
and & < 1/6nVk are satisfied. Let k, be an integer greater than both k, and
(6n8,)72. Set 8 = 1/6n/k . Then for any choice of k > k, the inequality (4.4.2)
is contradicted. Thus for such choice of 4, I, W, d, 8, and k we must have

h < 4y Vol(W)8~21("") < e(6n)™>"872" = ek

We have thus obtained a proof of the following proposition.

(4.6) Proposition. Ler M be a compact complex manifold of complex dimen-
sion n and L a Hermitian holomorphic line bundle over M such that the curvature
Jorm of L is semipositive everywhere on M and is positive definite outside a subset
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of M of measure zero. Then for every positive integer q and every positive number

€ there exists a positive integer k| depending on € such that dim HY(M, L*) < ek"
for k = k.

5. Characterization of MoiSezon manifolds

Now we are ready to prove the following main result, which has as an
immediate consequence the characterization of MoiSezon spaces by the ex-
istence of torsion-free coherent sheaves of rank 1 which are semipositive
everywhere and strictly positive outside a set of measure zero.

(5.1) Theorem. Let M be a compact complex manifold and L a Hermitian
holomorphic line bundle over M whose curvature form is everywhere semipositive
and is strictly positive outside a set of measure zero. Then M is a MoiSezon
manifold.

Proof. Let n be the complex dimension of M. Since the curvature form of L
is everywhere semipositive and is strictly positive at some point of M, it follows
that the nth power ¢;(L)" of the first Chern class ¢;( L) of L is positive. By the
theorem of Hirzebruch-Riemann-Roch (which for the case of a general com-
pact complex manifold is a consequence of the index theorem of Atiyah-Singer

(1,
> (-1)?dim HY(M, L¥)
g=0

equals the value of

n

Yy

exp{kc; (L —_—

p( 1( ))};[l 1— eXP(—Yy)
at the fundamental class of M, where vy,,---,y, are the Chern roots of the

tangent bundle of M. Hence for & sufficiently large,

n L n
3. (-1)“dim HI(M, L¥) > %——Cl(n, )
g=0 :

k"

By Proposition (4.6) for & sufficiently large

. 1 CI(L)" n
d1mH"(M,L")<Z; o k
for g > 1. It follows that
L n
(5.1.1) dim I'(M, Lk)>%cl(n,) K

for k sufficiently large.
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Let Z, be the set of points in M where every global holomorphic section of
L* over M vanishes. Let Z = N7_; Z,. Then there exists k, such that Z = Z, .
Let F = L*o. By a level set of U?_, I'(M, F*) at a point of M — Z we mean
the intersection for 1 < k& < oo of the level sets at that point of the maps ®,:
M — Z — Py, defined by T(M, F¥). Let d be the minimum of the complex
dimensions of the branches of all the level sets of UL, T'(M, F*).

Assume that M is not MoiSezon and we want to derive a contradiction. Then
d > 0. We cover M by a finite number of open unit balls B; (1 <j < m), each
in a coordinate patch, so that

(1) F is trivial on some open neighborhood of the topological closure of each
B, and

(ii) the center a; of each B, is-outside Z and is a regular point of a level set E;
of UP_, I'(M, F*) whose complex dimension at a; is d.

By replacing F by a suitable power of F, we can assume without loss of
generality that each E; is the level set of I'(M, F). For every positive integer &
the rank of @, is maximum at each a;.

Choose a positive number r < 1 such that the balls B/ with center 4; and
radius r (1 €7 < m) still cover M. Let || - | denote the pointwise norm of a
section of F* (computed from the Hermitian metric of L). By using the usual
Schwarz lemma, we conclude that there exists a positive number C > 1
independent of & such that for every holomorphic section s of F* over B; which
vanishes at a; to order /,

(5.1.2) sup [isfi(P) < Ckr’quI; Is(2).
€B,

Pe B/ 5

(The constant C is obtained from the Hermitian metric of F|B,;.)
Let 4, be the dimension of I'(M, F¥). We claim that
klog C e
T
log(1/r)

Otherwise, if we set / equal to the greatest integer not exceeding
klog C/log(1/r) + 1, then

(5.1.3) hk<m(n—d+

—d+
(5.1.4) hk>m(nn_dl)
and
(5.1.5) Chrl < 1.

Since the rank of @, at each a; is equal to its maximum rank n — d over
M — Z, from (5.1.4) it follows that there is a nonzero element s of T'(M, F*)
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which vanishes to order / at each a; (1 <j < m). From (5.1.2) and (5.1.5) we
conclude that the supremum of ||s]| over M must be strictly less than itself,
which is a contradiction. Hence (5.1.3) holds. On the other hand (5.1.3)
contradicts (5.1.1) when k is sufficiently large. It follows that M must be
Moiezon.

(5.2) Remark. - The method of proof given for Theorem (5.1) gives us also a
way of producing global holomorphic sections for a Hermitian line bundle L
over a compact complex manifold M of complex dimension » without the
assumption that the curvature form # of L is semipositive. We use the
notations of the preceding sections unless the contrary is explicitly stated. We
now use W to denote an open subset of M such that the curvature form 4 as a
quadratic form is bounded fromn below by a > 0 at every point of M — W
and by —b at every point of W, where b > 0. We set k = 1. Then instead of
Lemma (3.2) the arguments of (3.1) yield

af olP< G ol + bf I8l < (G, + b f ol

for every harmonic L-valued (0, g)-form ¢ on M. We use 7 = (C, + b)/a. To
make the arguments of §4 work, we have to assume
G +b

C*C'—— <1,
a

and choose / such that
(2 2{+2n 2
c#(g) C,(4n)"y2C" < 1.
We then end up with

dim H9(M, L) < 4y Vol(W)(min(s&, &))" ("}")

for ¢ = 1. From the theorem of Hirzebruch-Riemann-Roch we obtain

dim T(M, F) > x(M, L) = 2(n + 1)y Vol(W)(min(s%=, &))" ("7"),

where x(M, L) equals the value of

exp( ey (L )U m

at the fundamental class of M. Thus to conclude the existence of global
holomorphic sections of L over M we must assume that a is large relative to b
and to other constants coming from M and its Hermitian metric and also
assume that Vol(W) is small relative to x(M, L) and the other constants
coming from M and its Hermitian metric. Instead of working with k = 1 we
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can consider L* for sufficiently large ¥ and make the contribution from the
torsion tensor and the Chern roots of M negligible. Then x(A, L) can
essentially be replaced by ¢,;(L)"/n! if ¢;(L)”" is positive. Of course in that
case we can only draw conclusions about the existence of global holomorphic
sections of L* over M for sufficiently large .

However, as it is, this result on the existence of global holomorphic sections
for line bundles without the semipositivity assumption is highly unsatisfactory,
because the estimates for the dimensions of the cohomology groups are too
crude. The obstacle to getting sharper results is that, in the present method, to
apply the Schwarz lemma one has to use Leray’s isomorphism to convert
harmonic forms to cocycles first and then back to d-closed forms. In this
process a lot of undesirable constants come into the picture. If there is a direct
way of applying the Schwarz lemma to harmonic forms without the inter-
mediate step of conversion to cocycles, then one can get a condition for the
existence of global holomorphic sections expressed in an invariant form in
terms of certain integral expressions of the curvature form, its sup norm, and
the volume of the set where it fails to be positive. The Schwarz lemma is a
consequence of the log subharmonicity of the absolute value of a holomorphic
function. A harmonic form does not have this kind of log subharmonicity
property. However, for harmonic forms the fact that one has a Schwarz lemma
after using the intermediate step of conversion to cocycles indicates the
possibility of formulating some Schwarz lemma type result directly in terms of
harmonic forms.

A good criterion for the existence of global holomorphic sections which does
not involve pointwise positivity assumptions clearly would have important and
far-reaching consequences in the theory of complex manifolds.

6. Relation between the Grauert-Riemenschneider
and the eigenvalue conjecture

We are going to show how the eigenvalue conjecture implies the stronger
form of the Grauert-Riemenschneider conjecture.

(6.1) Let M be a compact complex manifold and L a Hermitian holomor-
phic line bundle over M whose curvature form is semipositive everywhere and
is strictly positive at some point P, of M. We assume that the eigenvalue
conjecture is true. Then there exists a positive number A, such that for every
nonnegative integer k the smallest positive eigenvalue A(M, L*) of the Lapla-
cian 0*3 on the Hilbert space of all global L? sections of L* over M is greater
than or equal to A .
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(6.2) Lemma. If k > 0 and w is a 0-exact L*-valued (0,1)-form on M, then
there exists a section f of L* over M such that w = 3f and (f, f) < (@, @) /Ay,
where (+,- ), is the inner product corresponding to the global L* norm over M.

Proof. Let f be the unique section of L* over M which is perpendicular to
all global holomorphic sections of L* over M and whose image under 9 is w.
Since f is perpendicular to the kernel of 9*d (which is precisely the set of all
global holomorphic sections of L* over M), it follows from the definition of
A(M, L) that (3*3f, f)ar = MM, LFXf, f),,. Hence

(@, @)p = (31,01 ) pr = (3%3f, £ ) 0 = MM, LYS, £ = Mo( S5 [ -

(6.3) Let 1 L* > M be the dual bundle of L with Hermitian metric
induced from L. For v € L* let ||v|| be its length with respect to the Hermitian
metric.

Since the curvature form of L is strictly positive at P,, we can choose a Stein
open neighborhood G of P, in M, a trivialization of L*|G with fiber coordinate
w, and a holomorphic coordinate system z = (z;,- - -,z,) of G such that, when
the Hermitian metric of L* with respect to the fiber coordinate w is written in
the form e?, the function ¢ is a strictly convex function of the coordinate z at
every point of G.

Let p be a smooth nonnegative function on G with compact support such
that p(P,) > 0 and ¢ + p is still a strictly convex function of z on G. Let
Y = @ + p. Now change the Hermitian metric on 77 }(G) to get a new
Hermitian metric for L* so that, with respect to the trivialization of L|G with
fiber coordinate w, the new Hermitian metric is e¥. For v € L* let ||v]|’ denote
its length with respect to the new Hermitian metric. For r > 0 let &, (respec-
tively €27) denote the set of all vectors v of L* with |v|| < r (respectively
lloll” < 7).

Let o(z) be the complex linear function of z such that 2 Re o(z) is the linear
part of the Taylor series expansion of ¥ at P, with respect to the coordinate z.
Since v is a strictly convex function of z on G, one has ¢ > J(P,;) + 2ZRe o on
G — {P,}. Let 5(z) = exp(— 3¢ (Py) — 6(z)). Then e¥|s|*>1 on G — { Py}
and e¥|s|? = 1 at P,. Since p(P,) > 0, we have e®|s|> < 1 at P,. Let V be the
complex submanifold of 77}(G) defined by w = s(z). Then V is disjoint from
Qf but ¥ N 7~Y(P,) is contained in ;. Since €, — Q] C 7 1(G), FNQ, isa
complex submanifold of ;.

(6.4) Lemma. The cohomology group H (2, 0;.), with the natural topology
as a quotient of a Fréchet space, is Hausdorff, where O, . is the sheaf of germs of
holomorphic functions on L*.
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Proof. Let {U;}; <, be a finite Stein cover of M and let {p;},;<,, be a
partition of unity subordinate to {U;}, ;- Since the curvature form of L is
everywhere semipositive, it follows that the boundary of {; is everywhere
weakly pseudoconvex. Hence 77‘1(Uj) N is Steinforl <j < m.

A (0,1)-form on an open subset of L* is said to be holomorphic in the fiber
coordinates if with respect to the local coordinates {;,- - -, ¢, of M and the local
fiber coordinate T of L* it can be expressed as

Z fv(g‘l" ' ',f,,, T) dfu
r=1

with f, holomorphic in 7. The cohomology group H'(£;, 0,.) equals the
quotient of the group of all smooth d-closed (0, 1)-forms on €, holomorphic in
the fiber coordinates by the image under @ of all smooth functions on €,
holomorphic in the fiber coordinates. To show this, it suffices to verify the
following two statements.

(i) For any 9d-closed smooth (0,1)-form « on €, we can find a smooth
d-closed (0,1)-form w’ on 2, holomorphic in the fiber coordinates such that
w — &’ is d-exact on £,.

(i1) If ’ is a smooth (0, 1)-form on &, and fis a smooth function on £, such
that &’ = 9f, then fis holomorphic in the fiber coordinates.

Statement (ii) is obvious, because d7 does not occur in «’. To prove (i), we
observe that due to the Steinness of 77‘1(Uj) N, we can find a smooth
function f; on 774(Y;) N @ such that © = 3f, on 7" (U) N Q. Let o' =
:ij*(apj)fj. Then w — @ = 3(X,(p;°7)f;) is d-exact on ;. Since ' is
0-closed and since d7 clearly does not occur in «’, it follows that w’ must be
holomorphic in the fiber coordinates.

To prove the Hausdorff property of H'(Q,, 0,.), we take a sequence of
smooth (0, 1)-forms w, on §; holomorphic in the fiber coordinates such that:

(1) each w, is the image under 3 of some smooth function f, on
holomorphic in the fiber coordinates,

(2) the sequence w, approaches in the Fréchet topology a smooth 3-closed
(0, 1)-form w on £; holomorphic in the fiber coordinates.

We have to show that w is d-exact on ©,. Take 0 < r < 1. First we show that
w|Q, is 3-exact on L,.

Consider the following power series expansions in the fiber coordinate 7 of
every local trivialization of L*,

joe] [ee]

o
w = Z w(k)Tk’ w, = Z w](’k),rk’ Lfv = Z fv(k)Tk‘

k=0 k=0 k=0
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Then w®), ! are L*-valued (0, 1)-forms on M and £%’ is a section of L* over
M. Moreover, 3f,%) = ¥ on M and lim,_, , ©{®¥ = ©®. We also have the
estimates of power series coefficients

(00, 0}, < 4,1

for some constant 4, depending on r. Being the limit of the 9-exact L*-valued
(0, 1)-forms w{*> on M, the L*-valued (0, 1)-form w*> must also be d-exact on
M. By Lemma (6.2) for every k > 0 there exists a section f© of L over M
such that w® = 3£ on M and

(f(k), f(k))M < }\_Arr—k‘
0
Let f= X2, f®7%, Then fis a smooth function on , holomorphic in the
fiber coordinates and 9f =  on €, .

Take an increasing sequence of real numbers 7, (0 < » < ) with 1 as limit.
The preceding argument shows that there exists a smooth function g, on £,
holomorphic in the fiber coordinates such that 9g, = w on §2, . It follows that
8, — 8,1 is holomorphic on £, . Expand g, — g,_, as a power series in the
fiber coordinates and let #,_; be a partial sum of the power series with
sufficient terms so that the supremum norm of g, — g,_; —h,_; on ¥, i
less than 27", Let g be the function on €, which is the limit of g, — X' 21 4 u_ as
v — o0. Such a limit exists because

v—1
(gy - X hu) -
p=1
is bounded by 277 on ©,_,. Clearly, we have 9g = w on ;.
(6.5) Let W=Q, N7 }(G). Then @, = QU W and the topological

closures of @) — W and W — Q] are disjoint. As part of the Mayer-Vietoris
sequence we have the exact sequence

651) (Q,0,.)eT(W,0,.)>T(WnQ,0,.) > H(Q,0,.)
o - HY(2],0,.) ® HY(W, 0,.).

Since W is Stein, HY(W, 0,.) vanishes. The map T(W, 0,.) - T(W N Q}, 0,.)
has dense image, because the density of the image of I'(7 }(G), 0,.) —
T'(7~Y(G) N Q}, @,.) is clear by using Taylor series expansion in fiber coordi-
nates. Since by Lemma (6.4) the cohomology group H(Q,, ¢,.) is Hausdorff,
it follows from the exact sequence in (6.5.1) that the restriction map a:
HYQ,, 0,.) - H'(9], 0,.) is injective.

Let & be the sheaf of germs of meromorphic functions on £, whose poles
are at most simple ones contained in V. Let 2 be the quotient sheaf %/, ..

y—2
&-1" Z h) =8 — &-1— hV~1
p=1
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From the short exact sequence 0 = 0,. = % — 2 — 0 we obtain the following
commutative diagram whose first row is exact:

(2, #) 219, 2) 5 ni(9,, 0,) ——H\(9,, 7)
o

£
HY(R,, 0,.)——— HY(Q, F)

(6.6) Lemma. The map n: T(Q,, F) — [(Q,, 2) is surjective.

Proof. Take x € I'(R,, #). It suffices to show that B(x)= 0. Clearly,
¥B(x) = 0. It follows that {a8(x) = 0. Since V is disjoint from , clearly £ is
an isomorphism. From the injectivity of a we conclude that 8(x) = 0.

(6.7) We are now ready to show that there are sufficiently many global
holomorphic sections of T'(M, L¥) to make M Moisezon. Without loss of
generality we can assume that the local coordinates z of M and the fiber
coordinate w of L|7~*(G) are so chosen that z(P,) = 0 and s(P,) = 1. Let z,
denote the function on G which is identically 1. Since 7 is surjective by Lemma
(6.6), for 0 <j < n there exists a meromorphic function F; on &; which on

2, N 77Y(G), when expressed in terms of zy,- - -,z,, w, is of the form
Z.
J

(6.7.1) Fj(z,w)=m+hj(2,w)a

where £;(z, w) is holomorphic on €. Let
oc

(6.7.2) hi(z,w)= Y hy(z)w
k=0

be the power series expansion of 4,(z,w) in w. By the definition of &, for
fixed z the radius of convergence of the power series (6.7.2) is at least e ~?*)/2,
Since

?(Py) =v(P) —p(Py) = ~p(Fy) <0,

it follows that there exists an open neighborhood D of P, in G and a number
R > 1 such that the radius of convergence of the power series (6.7.2) is at least
R for z € D. By replacing D by a smaller neighborhood and R by a smaller
number, we can assume without loss of generality that there exists a positive
number A such that

(6.7.3) il < AR* on D fork > 0.
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Since s(F,) = 1, we can also assume without loss of generality (after replacing
D by a smaller neighborhood) that

(6.7.4)

coordinates

[s|] <R onD.
We now expand the right-hand side of (6.7.1) in power series in w and obtain
o0 Zj
F(z,w)= (h,-k(Z)———m)wk-
k=0 s(z)
Fix % and consider the map from D to P, defined by the homogeneous
z z Z
h (Z) ———L——,h (2) ___1__’...’},” (z) ——=2—/|,
Ok S(Z)k+1 1k S(Z)k+1 k s(z)k+1

which is the same as the map defined by the homogeneous coordinates

(20 = 5(2)* M hoe(2) 2y — 5(2)* T hyl2) 2, — s(2)* h, ()]

Because of (6.7.3) and (6.7.4), as k — oo this map approaches the one defined
by the homogeneous coordinates [1, z,, - -,z,]. Thus for k sufficiently large the
n + 1 elements of T'(M, L*) which are the kth coefficients of F, (0 < j < n) in
the power series expansion in the fiber coordinates of L* can be used as
homogeneous coordinates of some open neighborhood of D. Hence M is
Moisezon.

Added in proof. The author has succeeded in refining the method used in the
proof of Theorem (5.1) to obtain a proof of the stronger version of the
Grauert-Riemenschneider conjecture, Details will appear in a later paper.
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